7-Channel PMIC with 2 DC-DC Converters, 5 LDOs and a Triple Input 10 Bits ADC

The NCP6925 integrated circuit is part of the ON Semiconductor mini power management IC family (PMIC). It is optimized to supply battery powered portable application sub−systems such as camera function, microprocessors. This device integrates 2 high efficiency 1 A step−down DC−DC converters, 5 low dropout (LDO) voltage regulators and a triple input 10 bits ADC in a WLCSP36 2.36 x 2.36 mm package.

Features

- 2 DC–DC Converters (3 MHz, $1 2.2 \mu H / 10 \mu F$, 1 A)
	- ♦ Peak Efficiency 95%
	- ♦ Programmable Output Voltage from 0.6 V to 3.3 V by 12.5 mV Steps
- 5 Low Noise Low Drop Out Regulators (2.2 μF, 300 mA)
	- ♦ Programmable Output Voltage from 0.8 V to 3.5 V by 25 mV Steps
	- 50 µVrms Typical Low Output Noise
- Triple Input 10 Bits ADC
	- ♦ Dual Resistor Measurement Mode
	- ♦ General Purpose Mode
- Control
	- ♦ Fully Programmable through a 400 kHz / 3.4 MHz I2C with Pin Selectable I²C Address and Interrupt Output
	- ♦ General Purpose I/O Pins that can be Used as Internal / External Regulator Enable Pins or Internal Sequences Triggered Input
	- ♦ Flexible Power−up and Down Sequences Programmable by I2C
- 140 µA Very Low Quiescent Current at No Load
- Small Footprint: 2.36 x 2.36 mm WLCSP 0.4 mm Pitch

Typical Applications

- Cellular Phones, Tablets
- Digital Cameras

ON Semiconductor®

www.onsemi.com

= Pb−Free Package

-

(Pb−Free indicator, "G" or microdot " -", may or may not be present.)

Figure 1. Application Schematic

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page [42](#page-41-0) of this data sheet.

Figure 3. Pin Out Description (Top and Bottom Views)

Table 1. PIN FUNCTION DESCRIPTION

Table [1.](#page-2-0) PIN FUNCTION DESCRIPTION

Table 2. MAXIMUM RATINGS (Note 1)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. All voltages are related to AGND.

2. ESDrated to the following:

Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22−A114. Machine Model (MM) ±150 V per JEDEC standard: JESD22−A115.

3. Latch up Current per JEDEC standard: JESD78 class II.

4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A.

Table 3. RECOMMENDED OPERATING CONDITIONS

5. Refer to the Application Information section of this data sheet for more details.

6. The thermal shutdown set to 150°C (typical) avoids potential irreversible damage on the device due to power dissipation.

7. The R_{0JA} is dependent of the PCB heat dissipation. Board used to drive this data was a NCP6925EVB board. It is a multilayer board with 1−ounce internal power and ground planes and 2−ounce copper traces on top and bottom of the board.

8. The maximum power dissipation (P_D) is dependent by input voltage, maximum output current and external components selected.

$$
R_{\theta JA} = \frac{125 - T_A}{P_D}
$$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A = −40°C to +85°C unless otherwise specified. AV_{IN} = $PV_{IN1} = PV_{IN2} = V_{IN1} = V_{IN2} = V_{IN3} = V_{IN4} = V_{IN5} = 3.6$ V (Unless otherwise noted). DCDC1 = 1.05 V, DCDC2 = 1.2 V, LDO1&2&3 = 2.85 V, LDO4&5 = 1.8 V. Typical values are referenced to T_A = +25°C and default configuration (Note [10\)](#page-6-0)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
SUPPLY CURRENT: Pins $AV_{IN} - PV_{IN1} - PV_{IN2} - V_{IN1} - V_{IN2} - V_{IN3} - V_{IN4} - V_{IN5}$							
IQ	Operating quiescent current	DCDC1&2 on, no load, no switching LDO _s off		65		μA	
		DCDC1&2 on, no load, no switching LDOs on, no load $T_A = up to +85^{\circ}C$		140			
		DCDC1&2 Off LDOs on, no load $T_A = up to +85 °C$		45			
I SLEEP	Sleep mode current	HWEN pin on All DC to DC and LDOs off V_{IN} = 2.5 V to 5.5 V $T_A = up to +85^{\circ}C$		7.5		μA	
I_{OFF}	Shutdown current	All DCDCs and LDOs off $HWEN pin = off$ ² C interface disabled V_{IN} = 2.5 V to 5.5 V		0.3	2	μA	

DCDC1&2 STEP DOWN CONVERTERS

LDO1 TO LDO5 LOW DROP OUT REGULATORS

[9](#page-6-0). Devices that use non–standard supply voltages which do not conform to the intent I²C bus system levels must relate their input levels to the V_{DD} voltage to which the pull−up resistors R_P are connected.

[10](#page-6-0).Refer to the Application Information section of this data sheet for more details.

[11.](#page-6-0) Guaranteed by design and characterized.

Table [4.](#page-4-0) ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A = −40°C to +85°C unless otherwise specified. AV_{IN} = $PV_{IN1} = PV_{IN2} = V_{IN1} = V_{IN2} = V_{IN3} = V_{IN4} = V_{IN5} = 3.6$ V (Unless otherwise noted). DCDC1 = 1.05 V, DCDC2 = 1.2 V, LDO1&2&3 = 2.85 V, LDO4&5 = 1.8 V. Typical values are referenced to T_A = +25°C and default configuration (Note [10\)](#page-6-0)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
LDO1 TO LDO5 LOW DROP OUT REGULATORS							
t _{START}	Soft-Start Time	Vout = 1.8 V Vout = 2.85 V		110 160		μs	
ΔV_{OUT}	Output Voltage Accuracy DC	$I_{OUT} = 300$ mA	-2	V_{NOM}	$+2$	%	
	Load Regulation	$I_{\text{OUT}} = 0$ mA to 300 mA		0.4		%	
	Line Regulation	V_{IN} = 2.5 V to 5.5 V V_{OUT} = 1.8 V, I_{OUT} = 300 mA		0.3		$\%$	
V _{DROP}	Dropout Voltage	I_{OIII} = 300 mA $V_{OUT} = V_{NOM} - 2\%$, $V_{NOM} = 1.8 V$ $V_{OUT} = V_{NOM} - 2\%$, $V_{NOM} = 2.85$ V		300 170		mV	
PSRR	Ripple Rejection	$F = 10$ kHz $V_{OUT} = 2.8 V, I_{OUT} = 100 mA (Note 11)$		-50		dB	
Noise		100 Hz \rightarrow 100 kHz, $V_{OUT} = 2.8 V, I_{OUT} = 100 mA (Note 11)$		50		μ V	
R _{DISLDO}	LDO Active Output Discharge			25		Ω	
U_{VP_LDO}	Under voltage threshold detection			VOUT_LD $_{\bigcirc}$ x 0.875		\vee	
ADC							
	\mathbf{D} of construction of the state of \mathbf{D}	$D = 1$		\sim λ		$\sqrt{ }$	

HWEN, A0, A1

GPIO1, GPIO2

I 2C

[9](#page-6-0). Devices that use non–standard supply voltages which do not conform to the intent I²C bus system levels must relate their input levels to the V_{DD} voltage to which the pull–up resistors R_P are connected.

[10](#page-6-0).Refer to the Application Information section of this data sheet for more details.

[11.](#page-6-0) Guaranteed by design and characterized.

Table [4.](#page-4-0) ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A = −40°C to +85°C unless otherwise specified. AV_{IN} = $PV_{IN1} = PV_{IN2} = V_{IN1} = V_{IN2} = V_{IN3} = V_{IN4} = V_{IN5} = 3.6$ V (Unless otherwise noted). DCDC1 = 1.05 V, DCDC2 = 1.2 V, LDO1&2&3 = 2.85 V, LDO4&5 = 1.8 V. Typical values are referenced to T_A = +25°C and default configuration (Note 10)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
12C							
V _{I2CH}	SCL, SDA high input voltage	SCL, SDA pin (Note 11)	0.8x V _{I2CINT}			٧	
V _{I2COL}	SCL, SDA low output voltage	I_{SINK} = 3 mA (Note 11)			0.4	V	
F _{SCL}	I ² C clock frequency	(Note 11)	-	-	3.4	MHz	
TOTAL DEVICE							
VUVLO	Under Voltage Lockout	V _{IN} falling	—	$\overline{}$	2.3	V	
VUVLOH	Under Voltage Lockout Hysteresis	V_{IN} rising	60	130	200	mV	
$\mathsf{T}_{\mathsf{dlysys}}$	Initialization time at power on			2		ms	
T_{SD}	Thermal Shut Down Protection	(Note 11)		150		$^{\circ}C$	
T _{WARNING}	Warning Rising Edge	(Note 11)		135		$^{\circ}C$	
T _{SDHYS}	Thermal Shut Down Hysteresis	(Note 11)		35		$^{\circ}C$	

9. Devices that use non–standard supply voltages which do not conform to the intent I²C bus system levels must relate their input levels to the V_{DD} voltage to which the pull−up resistors R_P are connected.

10.Refer to the Application Information section of this data sheet for more details.

11. Guaranteed by design and characterized.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL OPERATING CHARACTERISTICS

AV_{IN} = PV_{IN1} = PV_{IN2} = V_{INLDOx} = 3.6 V (Unless otherwise noted). T_J = +25°C, DCDC1 = 1.25 V, DCDC2 = 1.85 V, LDO1&3 = 2.80 V, LDO3&4 = 1.80 V, C_{LDO} = 2.2 μF 0603, L_{DCDC} = 2.2 μH (DFE201612R−H−2R2N) − C_{DCDC} = 10 μF 0603.

Figure 6. DCDC1 Efficiency vs. IOUT (auto mode) VOUT = 1.8 V

Figure 7. DCDC1 Efficiency vs. IOUT (auto mode) VOUT = 3.3 V

TYPICAL OPERATING CHARACTERISTICS

AV_{IN} = PV_{IN1} = PV_{IN2} = V_{INLDOx} = 3.6 V (Unless otherwise noted). T_J = +25°C, DCDC1 = 1.25 V, DCDC2 = 1.85 V, LDO1&3 = 2.80 V, LDO3&4 = 1.80 V, C_{LDO} = 2.2 μF 0603, L_{DCDC} = 2.2 μH (DFE201612R−H−2R2N) − C_{DCDC} = 10 μF 0603.

Figure 8. DCDC2 Efficiency vs. IOUT (auto mode) VOUT = 0.6 V

Figure 10. DCDC2 Efficiency vs. IOUT (auto mode) VOUT = 1.8 V

Figure 9. DCDC2 Efficiency vs. IOUT (auto mode) VOUT = 1.2 V

Figure 11. DCDC2 Efficiency vs. IOUT (auto mode) VOUT = 3.3 V

TYPICAL OPERATING CHARACTERISTICS

 $AV_{IN} = PV_{IN1} = PV_{IN2} = V_{INLDOX} = 3.6$ V (Unless otherwise noted). $T_J = +25$ °C, DCDC1 = 1.25 V, DCDC2 = 1.85 V, LDO1&3 = 2.80 V, LDO3&4 = 1.80 V, C_{LDO} = 2.2 μF 0603, L_{DCDC} = 2.2 μH (DFE201612R−H−2R2N) − C_{DCDC} = 10 μF 0603.

Figure 12. DCDC1 Ripple Voltage in PFM Mode $(V_{IN} = 3.6V - V_{OUT} = 1.2 V - No$ load)

Figure 15. DCDC2 Ripple Voltage in PFM Mode $(V_{IN} = 3.6 V - V_{OUT} = 1.8 V - No load)$

TYPICAL OPERATING CHARACTERISTICS

AV_{IN} = PV_{IN1} = PV_{IN2} = V_{INLDOx} = 3.6 V (Unless otherwise noted). T_J = +25°C, DCDC1 = 1.25 V, DCDC2 = 1.85 V, LDO1&3 = 2.80 V, LDO3&4 = 1.80 V, C_{LDO} = 2.2 μF 0603, L_{DCDC} = 2.2 μH (DFE201612R−H−2R2N) − C_{DCDC} = 10 μF 0603.

Figure 16. DCDC1 Load Transient Response $(PWM Mode, V_{IN} = 3.6 V - V_{OUT} = 1.2 V)$

Figure 17. DCDC1 Load Transient Response $(PWM Mode, V_{IN} = 3.6 V - V_{OUT} = 1.8 V)$

Figure 19. DCDC2 Load Transient Response (PWM Mode, V_{IN} = 3.6 V – V_{OUT} = 1.8 V)

TYPICAL OPERATING CHARACTERISTICS

AV_{IN} = PV_{IN1} = PV_{IN2} = V_{INLDOx} = 3.6 V (Unless otherwise noted). T_J = +25°C, DCDC1 = 1.25 V, DCDC2 = 1.85 V, LDO1&3 = 2.80 V, LDO3&4 = 1.80 V, C_{LDO} = 2.2 μF 0603, L_{DCDC} = 2.2 μH (DFE201612R−H−2R2N) − C_{DCDC} = 10 μF 0603.

Figure 23. LDO4 Load Regulation (V_{OUT} = 1.8 V)

LDO4 Load Regulation

TYPICAL OPERATING CHARACTERISTICS

AV_{IN} = PV_{IN1} = PV_{IN2} = V_{INLDOx} = 3.6 V (Unless otherwise noted). T_J = +25°C, DCDC1 = 1.25 V, DCDC2 = 1.85 V, LDO1&3 = 2.80 V, LDO3&4 = 1.80 V, C_{LDO} = 2.2 μF 0603, L_{DCDC} = 2.2 μH (DFE201612R−H−2R2N) − C_{DCDC} = 10 μF 0603.

ADC Code

256

Figure 28. ADC INL Figure 29. ADC DNL

640

576 ADC Code

768 832

896 960 1024

320 384 448 512

DETAILED OPERATING DESCRIPTION

General Description

The NCP6925 mini power management integrated circuit is optimized to supply different sub systems of battery powered portable applications. The IC can be supplied directly from the latest technology single cell batteries such as Lithium−Polymer as well as from triple alkaline cells. Alternatively, the IC can be supplied from a pre−regulated supply rail in case of multi−cell or main powered applications.

It integrates two switched mode DCDC converters and five low dropout linear regulators. The IC is widely programmable through an $I²C$ interface and includes low level IO signaling. An analog core provides the necessary references for the IC while a digital core ensures proper control.

The output voltage range, current capabilities and performance of the switched mode DCDC converters are well suited to supply the different peripherals in the system as well as to supply processor cores. For PWM operation, the converters run on a local 3 MHz clock. A low power PFM mode is provided that ensures that even at low loads high efficiency can be obtained. All the switching components are integrated including the compensation networks and synchronous rectifier. Only a small sized $1 - 2.2 \mu$ H inductor and 10 µF bypass capacitor are required for typical applications.

The general purpose low dropout regulators can be used to supply the lower power rails in the application. To improve the overall application standby current, the bias current of these regulators are made very low. The regulators have their own input supply pin to be able to connect them independently to either the system supply voltage or to the output of the DCDC converter in the application. The regulators are bypassed with a small size $1 - 2.2 \mu F$ capacitor.

The feature can be controlled through the $I²C$ interface. In addition to this bus, digital control pins including hardware enable (HWEN), two general purpose inputs / outputs (GPIOx) and interrupt (INTB) are provided.

The 10 bits triple input analog to digital converter checks and store the resistor value placed on ADCIN1 and ADCIN2. It is used to store the ID of the external module which help to have the right configuration for each converter.

Under Voltage Lockout

The core does not operate for voltages below the Under Voltage Lock Out (UVLO) level. Below the UVLO threshold, all internal circuitry (both analog and digital) is held in reset.

NCP6925 operation is guaranteed down to UVLO when battery voltage is dropping off. To avoid erratic on / off behaviour, a typical 130 mV hysteresis is implemented. When an UVLO event occurs and the AV_{IN} voltage recovers, NCP6925 is initialized in its default state.

Thermal Shutdown

The thermal capabilities of the device can be exceeded due to the output power capabilities of the on chip step down converters and low drop out regulators. A thermal protection circuit is therefore implemented to prevent the part from being damaged. This protection circuit is only activated when the core is in active mode (at least one output channel is enabled). During thermal shutdown, all outputs of the NCP6925 are off.

When the NCP6925 returns from thermal shutdown mode, it can re−start in three different configurations depending on REARM[1:0] bits:

- If REARM[1:0] = 00, NCP6925 re−starts with default register values,
- If REARM[1:0] = 01 NCP6925 re−starts with register values set prior to thermal shutdown,
- Finally if $REARM[1:0] = 10$, NCP6925 does not re−start automatically, a toggle of HWEN or CHx_EN[] or SEQx_CTRL[] is needed.

In addition, a thermal warning is implemented which can inform the processor through an interrupt (if not masked) that NCP6925 is close to its thermal shutdown so that preventive measurement can be taken by software.

Active Output Discharge

To prevent any disturbances on the power−up sequence, a quick active output discharge is done during the start−up sequence for all output channels.

When the IC is turned off through HWEN pin (or ENx bits) or AVIN drops down below UVLO threshold, no shut down sequence is expected, all supplies are disabled and outputs discharged simultaneously.

Enabling / Disabling

The HWEN pin controls the device start up without enabling the output of the converters. If HWEN is raised, this starts the internal circuitry. By default all the converters are off. If HWEN is made low, device enters in shutdown mode and all regulators are turned off. Regulators can also be turned off with the dedicated register. A built−in pull−down resistor disables the device if this pin is left unconnected.

When HWEN is high, the different power rails can be independently enabled / disabled by writing the appropriate bit in the ENABLE register.

When HWEN is low, NCP6925 is in power down mode and I^2C will return NACK to any request. After HWEN transition from low to high, initialization sequence and ADC 1&2 read will be performed. During this sequence is performed, I^2C will NACK any request too. I^2C will be accessible after sequence and ADC completion are completed.

Power Up / Down Sequence and HWEN

Power up and power down sequence can be program and controlled with the dedicated register (BUCKx_SEQ[7:0], LDO12_SEQ[7:0], LDO34_SEQ[7:0], LDO5_SEQ[3:0], CHx_SEQ[7:0], SEQ1_PROG[7:0], SEQ2_PROG[7:0]). SEQx_CTRL[1:0] set the power−up or shut down. Converters can also be turned on and off independently with the CHx_EN[6:0] register.

When a shutdown is required during a power−up, it will be valid and start when the power−up is finished.

Any changes in BUCKx_SEQ[7:0], LDO12_SEQ[7:0], LDO34_SEQ[7:0], LDO5_SEQ[3:0] during a power−up or shutdown is not valid and will not modify the NCP6925 setting.

Figure 30.

Example for Sequencer 1 with DCDC1 assign to SLOT1, DCDC2 assign to SLOT2, VOUT1 assign to SLOT3, VOUT2 assign to SLOT4, VOUT3 assign to SLOT5, VOUT4 assign to SLOT6, VOUT5 assign to SLOT5

Slot Period and DCDC Soft Start Time Setting

(details Table 35)

SEQ_SPEED[1:0] defines the slot period of the 2 sequences. The DCDC soft start time selection is linked to the slot period as the setting is also done with SEO SPEED[1:0].

Any changes in SEQ_SPEED[1:0] during a power−up or shut down sequence is valid only when the sequence is finished.

Example for Sequencer 1and Sequencer 2 with DCDC1 assign to SLOT1 SEQ1, DCDC2 assign to SLOT6 SEQ2, VOUT1 assign to SLOT1 SEQ2, VOUT2 assign to SLOT2 SEQ2, VOUT3 assign to SLOT5 SEQ1, VOUT4 assign to SLOT6 SEQ1, VOUT5 assign to SLOT5 SEQ2

 CHx SFO = 0000

Figure 33. Logic Diagram of Power Up / Power Down

POR

Figure 32.

Example of turn on sequence with DCDC1 assign to SLOT1 SEQ1, DCDC2 assign to SLOT6 SEQ2, VOUT1 assign to SLOT1 SEQ2, VOUT2 assign to SLOT2 SEQ2, VOUT3 control with LDO3_EN bit, VOUT4 assign to SLOT6 SEQ1, VOUT5 assign to SLOT6 SEQ2

DCDC Step Down Converter and LDO's Under Voltage Threshold

To indicate that the output of an output channel is established and that the level does not go below 0.875 x Vout_set, a UVT bit is available for each output channel.

The UVT bit is high when the channel is off and goes low when enabling the channel. Once the output voltage reaches the expected output level, the UVT bit becomes high again.

When during operation the output gets below the expected level (87.5% for the LDOs or 90% for the DCDCs) the UVT bit goes low which indicates a power failure. When the voltage rises again above 87.5% for the LDOs or 90% for the DCDCs the UVT bit goes high again.

Figure 35. LDOx Channel Internal UVT Bit

Interrupt

The interrupt controller continuously monitors internal interrupt sources, generating an interrupt signal when a system status change is detected (dual edge monitoring). The interrupt sources include:

Individual bits generating interrupts will be set to 1 in the INT_ACK1/INT_ACK2/INT_ACK3_registers (I²C read only registers), indicating the interrupt source. INT_ACK1/INT_ACK2/INT_ACK3 registers are automatically reset by an I²C read. INT_SEN1/INT_SEN2/INT_SEN3 registers (read only registers) contain real time indicators of interrupt sources.

TSD **Thermal Shutdown**

All interrupt sources can be masked by writing registers INT_MSK1/INT_MSK2/INT_MSK3. Masked sources will never generate an interrupt request on INTB pin.

The INTB pin is an open drain output. A non masked interrupt request will result in the INTB pin being driven low.

When the host reads the

INT_ACK1/INT_ACK2/INT_ACK3 registers the INTB pin is released to high impedance and the interrupt registers INT_ACK1/INT_ACK2/INT_ACK3 are cleared.

Below figure shows how DCDC1 converter power good produces interrupt on INTB pin with INT_SEN1/INT_MSK1/INT_ACK1 and an I2C read access (assuming no other interrupt happens during this read period).

Figure 36. Interrupt Timing Chart Example of PG_DCDC1

INT_MSK1, INT_MSK2 and INT_MSK3 registers are set to disable INTB feature by default during power−up.

In case the interruption is flagged due to an under voltage threshold detection or an output over current detection, the regulator which failed will be turned off.

The regulator can be turn on again only after the INT_ACK1/INT_ACK2/INT_ACK3 registers are cleared by reading these registers.

Errors

The events which are considered as an error and flag the interrupt pin are:

- Under Voltage Threshold of DCDC1
- Under Voltage Threshold of DCDC2
- Under Voltage Threshold of LDO1
- Under Voltage Threshold of LDO2
- Under Voltage Threshold of LDO3
- Under Voltage Threshold of LDO4
- Under Voltage Threshold of LDO5
- Over Current Protection for DCDC1
- Over Current Protection for DCDC2
- Over Current Protection for LDO1
- Over Current Protection for LDO2
- Over Current Protection for LDO3
- Over Current Protection for LDO4
- Over Current Protection for LDO5
- Under Voltage Lock Out
- Thermal Shutdown
- Thermal Shutdown Warning

The errors need to be activated with the registers INT_MASK1/INTMASK2/INT_MASK3.

To recover from the error mode and release the part, the registers INT_ACK1/INT_ACK2/INT_ACK3 has to be read.

• Thermal Shutdown error : When a thermal shutdown event occurs, the part goes in shutdown mode. It recovers in the mode define with the 2 bits REARM[1:0]. By default NCP6925 recovers with a new power up sequence with no reset of the $I²C$ registers. This error is master and independent of the functionality of the interruption register. The user can choose the flag the INT pin and INT_ACK3 register with the register INT_MSK3.

- Thermal shutdown warning : When a TSD warning event occurs, the INT pin and the INT_ACK3 register are flagged. The user has to read the register INT_ACK3 to recover. This error need to be activated with the registers INT_MASK3. By default this error is masked.
- Under Voltage Lockout : When an under voltage lock out event occurs, the part goes in shutdown mode. It recovers in its default state. This error is master and independent of the functionality of the interruption register. The user can choose to flag the INT pin and INT_ACK1 register with the register INT_MSK1.
- Under Voltage Threshold on CHx: when this event occurs, the corresponding regulator is turned off. The values of CHx_SEQ[3:0] is reset to 0000 and CHx_EN is reset to 0 and the INTB pin is pulled high. This error is linked to the interruption register. By default this error is activated.
- Over Current Protection on CHx: when this event occurs, the corresponding regulator is turned off. The values of CHx_SEQ[3:0] is reset to 0000 and CHx_EN is reset to 0 and the INTB pin is pulled high. This error is linked to the interruption register. By default this error is activated.

GPIOs

2 GPIOs are available and can be configured with GPIO_CONTROL1^[] and GPIO_CONTROL2^[] register.

GPIO_READ[1:0] bits store the logic level when the pins are set as input.

GPIOx_EN_RD bit set the pin as an input (1) or output (0).

GPIOx[1:0] bits set the logic level (HiZ, low, high) when the pins are set as output.

The GPIOs can also enable or disable one or multiple regulators when it is set as an input and configured in the CHx_SEQ register.

The turn−on or shut down sequence can also be started by a GPIO when it is set as an input and configured in the SEQx_CTRL[1:0] bits.

DCDC Step Down Converters

The DCDC converters are synchronous rectifier type with both high side and low side integrated switches. Neither external transistor nor diodes are required for proper operation. Feedback and compensation network are also fully integrated.

The DCDC converters can operate in two different modes: PWM and PFM. The transition between PWM/PFM modes can occur automatically or the switcher can be placed in forced PWM mode by $I²C$ programming.

PWM (Pulse Width Modulation) Operating Mode

In medium and high load conditions, DCDC converters operates in PWM mode from a fixed 3MHz clock and adapts its duty cycle to regulate the desired output voltage. In this mode, the inductor current is in CCM (Continuous Current Mode) and the voltage is regulated by PWM. The internal N-MOS switch operates as synchronous rectifier and is driven complementary to the P−MOS switch. In CCM the lower (N−MOS switch) in a synchronous converter provides a lower voltage drop than the diode in an asynchronous converter, which provides less loss and higher efficiency.

PFM (Pulse Frequency Modulation) Operating Mode

In order to save power and improve efficiency at low loads the DCDC converters operate in PFM mode as the inductor drops into DCM (Discontinuous Current Mode). The upper FET on time is kept constant and the switching frequency is variable. Output voltage is regulated by varying the switching frequency which becomes proportional to loading current. As it does in PWM mode, the internal N−MOSFET operates as synchronous rectifier after each P−MOSFET on−pulse with very small negative current limit. When load increases and current in inductor becomes continuous again, the controller automatically turns back to PWM fixed frequency mode.

Forced PWM

The DCDC converters can be programmed to only use PWM and disable the transition to PFM if so desired.

Inductor Peak Current Limitation

During normal operation, peak current limitation will monitor and limit the current through the inductor. This current limitation is particularly useful when size and/or height constrains inductor power

Soft Start

A soft start is provided to limit inrush currents when enabling the converter. After enabling and internal delays elapsed, the DC to DC converter output will gradually ramp up to the programmed voltage.

Triple Input 10 Bits ADC

The triple input 10 bits has 2 different mode:

During power−up, ADC converts the ADCIN1 and ADCIN2 in the EXTID register.

When HWEN is set, the ADC automatically converts the 2 inputs and then it is turned off. It could be used for applications which need to detect and store in a register the external accessory id when the battery is plugged.

Figure 39. Example for the Detection of 2 External Camera Modules

Figure 40. Timing of the 2 Conversion when AVIN is Plugged

When the part is turn on, the 3 inputs of the ADC can be used as a general purpose ADC by setting the ADC_CONF register. Result can be read in the ADC_READ_INPUT register.

Figure 41. Timing of a Conversion in the General Purpose Mode

I 2C COMPATIBLE INTERFACE

NCP6925 can support a subset of I²C protocol, below are detailed introduction for I²C programming.

I 2C Communication Description

ON Semiconductor communication protocol is a subset of $I²C$ protocol.

The first byte transmitted is the Chip address (with LSB bit sets to 1 for a read operation, or sets to 0 for a Write operation). Then the following data will be:

- In case of a Write operation, the register address (@REG) we want to write in followed by the data we will write in the chip. The writing process is incremental. So the first data will be written in @REG, the second one in $@REG + 1$ The data are optional.
- In case of read operation, the NCP6925 will output the data out from the last register that has been accessed by the last write operation. Like writing process, reading process is an incremental process.

Read Out from Part

The Master will first make a "Pseudo Write" transaction with no data to set the internal address register. Then, a stop then start or a Repeated Start will initiate the read transaction from the register address the initial write transaction has set:

Figure 43. Read Out from Part

The first WRITE sequence will set the internal pointer on the register we want access to. Then the read transaction will start at the address the write transaction has initiated.

Transaction with Real Write then Read: With Stop Then Start

Write in Part

Write operation will be achieved by only one transaction. After chip address, the MCU first data will be the internal register we want access to, then following data will be the data we want to write in Reg, Reg + 1, Reg + 2, ..., Reg + n.

Write n Registers:

Figure 45. Write in n Registers

I 2C Address

NCP6925 has 4 selectable I²C address (see below table A7~A1), NCP6925 supports 7–bit address only.

1 **| 0 | 1 | 0 | 0 | A1 | A0 |** −

Table 6. NCP6925 I2C Address

NOTE: Other addresses are available upon request.

Register Map

Following register map describes I²C registers. Registers can be: R Read only register RC Read then Clear RW Read and Write register RWM Read, Write and can be modified by the IC Reserved Address is reserved and register is not physically designed Spare Address is reserved and register is physically designed

*Register 0x20 to 0x30 are reserved for internal use only.

REGISTERS DESCRIPTION

Table 7. CHIP_REV REGISTER

Table 8. BIT DESCRIPTION OF CHIP_REV REGISTER

Table 9. EXTID REGISTER

Table 10. BIT DESCRIPTION OF EXTID REGISTER

Table 11. EXTID REGISTER

Table 12. BUCK1_PROG REGISTER

Table 13. BUCK2_PROG REGISTER

Table 14. BUCK12_PROG REGISTER

Table 15. BIT DESCRIPTION OF BUCKx_PROG REGISTER

Table 16. BIT DESCRIPTION OF BUCKx_PROG REGISTER

Table 17. LDO1_VOUT REGISTER

Table 18. LDO2_VOUT REGISTER

Table 19. LDO3_VOUT REGISTER

Table 20. LDO4_VOUT REGISTER

Table 21. LDO5_VOUT REGISTER

Table 22. BIT DESCRIPTION OF LDOx_VOUT REGISTER

Table [22.](#page-27-0) BIT DESCRIPTION OF LDOx_VOUT REGISTER

Table 23. CHx_EN REGISTER

Table 24. BIT DESCRIPTION OF CHx_EN REGISTER

Table 25. BIT DESCRIPTION OF CHx_EN REGISTER

Table 26. BUCKx_SEQ REGISTER

Table 27. LDO12_SEQ REGISTER

Table 28. LDO34_SEQ REGISTER

Table 29. LDO5_SEQ REGISTER

Table 30. BIT DESCRIPTION OF CHx_SEQ REGISTER

Table 31. BIT DESCRIPTION OF CHx_SEQ REGISTER

Table 32. SEQ1_PROG REGISTER

Table 33. SEQ2_PROG REGISTER

Table 34. BIT DESCRIPTION OF SEQx_PROG REGISTER

Table 35. BIT DESCRIPTION OF SEQ_SPEED REGISTER

Table 36.

BIT DESCRIPTION OF SEQx_CTRL REGISTER

Table 37.

BIT DESCRIPTION OF SEQx_COUNT REGISTER

Table 38. GPIO_CONTROL1 REGISTER

Table 39. GPIO_CONTROL2 REGISTER

Table 40. BIT DESCRIPTION OF SEQx_PROG REGISTER

Table 41.

BIT DESCRIPTION OF GPIO_READ REGISTER

Table 42.

BIT DESCRIPTION OF GPIOx_EN_RD REGISTER

Table 44. ADC_CONF REGISTER

Name: ADC_CONFIG Address: \$20 Type: RW Default: \$C0 **D7 D6 D5 D4 D3 D2 D1 D0** ADC_HOLD[2:0] ADC_CS_DIS ADC_CHAN[1:0] ADC_REQ ADC_BIAS_EN

Table 45. BIT DESCRIPTION OF ADC_CONF REGISTER

Table 46.

BIT DESCRIPTION OF ADC_CHAN[1:0] REGISTER

Table 43. BIT DESCRIPTION OF GPIOx[1:0] REGISTER

Table 47.

BIT DESCRIPTION OF ADC_HOLD[2:0] REGISTER

Table 48. ADC_READ_INPUT REGISTER

Table 49. BIT DESCRIPTION OF ADC_READ_INPUT REGISTER

Table 50. ADC_READ_INPUT2 REGISTER

Table 51. BIT DESCRIPTION OF ADC_READ_INPUT REGISTER

Table 52. INT_ACK1 REGISTER

Table 53. BIT DESCRIPTION OF INT_ACK1 REGISTER

Table 54. INT_ACK2 REGISTER

Table 55. BIT DESCRIPTION OF INT_ACK2 REGISTER

Table 56. INT_ACK3 REGISTER

Table 57. BIT DESCRIPTION OF INT_ACK3 REGISTER

Table 58. INT_SEN1 REGISTER

Table 59. BIT DESCRIPTION OF INT_SEN1 REGISTER

Table 60. INT_SEN2 REGISTER

Table 61. BIT DESCRIPTION OF INT_SEN2 REGISTER

Table 62. INT_SEN3 REGISTER

Table 63. BIT DESCRIPTION OF INT_SEN3 REGISTER

Table 64. INT_MSK1 REGISTER

Table 65. BIT DESCRIPTION OF INT_MSK1 REGISTER

Table 66. INT_MSK2 REGISTER

Table 67. BIT DESCRIPTION OF INT_MSK2 REGISTER

Table 68. INT_MSK3 REGISTER

Table 69. BIT DESCRIPTION OF INT_MSK3 REGISTER

Table 70. REARM REGISTER

Table 71. BIT DESCRIPTION OF REARM REGISTER

Table 72. BIT DESCRIPTION OF REARM[1:0] REGISTER

Table 73. DIS REGISTER

Table 74. BIT DESCRIPTION OF DIS REGISTER

Application Information

Figure 46. Typical Application Schematic

Inductor Selection

 $NCP6925$ DCDC converters typically use 1 μ H inductor. Use of different values can be considered to optimize operation in specific conditions. The inductor parameters directly related to device performances are saturation current, DC resistance and inductance value. The inductor ripple current $(\Delta I L)$ decreases with higher inductance.

$$
\Delta I_{L} = V_{O} \times \frac{1 - \frac{V_{O}}{V_{IN}}}{L \times F_{SW}}
$$
 (eq. 1)

$$
I_{LMAX} = I_{OMAX} + \frac{\Delta I_L}{2}
$$
 (eq. 2)

With:

- Fsw = Switching Frequency (Typical 3 MHz)
- $L = Inductor value$
- ΔI_L = Peak–To–Peak inductor ripple current
- \bullet I_{LMAX} = Maximum Inductor Current

To achieve better efficiency, ultra low DC resistance inductor should be selected.

The saturation current of the inductor should be higher than the ILMAX calculated with the above equations.

Table 75. INDUCTOR L = 1.0 H

Table 76. **INDUCTOR L = 2.2** μ **H**

Output Capacitor Selection for DC to DC Converters

Selecting the proper output capacitor is based on the desired output ripple voltage. NCP6925 DCDC converters typically use 10 µF output capacitor. Ceramic capacitors with low ESR values will have the lowest output ripple voltage and are strongly recommended. The output capacitor requires either an X7R or X5R dielectric.

The output ripple voltage in PWM mode can be estimated by:

$$
\Delta V_{\rm O} = V_{\rm O} \times \frac{1 - \frac{V_{\rm O}}{V_{\rm IN}}}{L \times F_{\rm SW}} \times \left(\frac{1}{2 \times \pi \times C_{\rm O} \times f} + \text{ESR} \right) \tag{eq. 3}
$$

Table 77. RECOMMENDED OUTPUT CAPACITOR FOR DC TO DC CONVERTERS

Input Capacitor Selection for DC TO DC Converters

In PWM operating mode, the input current is pulsating with large switching noise. Using an input bypass capacitor can reduce the peak current transients drawn from the input supply source, thereby reducing switching noise significantly.

The maximum RMS current occurs at 50% duty cycle with maximum output current, which is 1/2 of maximum output current. A low profile ceramic capacitor of $4.7 \mu F$ should be used for most of the cases. For effective bypass results, the input capacitor should be placed as close as possible to PVIN1 and PVIN2 pins.

Output Capacitor for LDOs

For stability reason, a typical 2.2μ F ceramic output capacitor is suitable for LDOs. The LDO output capacitor should be placed as close as possible to the NCP6925 output pin.

Input Capacitor for LDOs

NCP6925 LDOs do not require specific input capacitors. However, a typical 1 µF ceramic capacitor placed close to LDOs' input is helpful for load transient.

Power input of LDO can be connected to main power supply. However, for optimum efficiency and lower NCP6925 thermal dissipation, the lowest voltage available in the system is preferred. Input voltage of each LDO should always be higher than $V_{\text{OUT}} + V_{\text{LDODROP}}$ (V_{DROP}, LDO dropout voltage at maximum current).

Capacitor DC Bias Characteristics

Real capacitance of ceramic capacitor changes versus DC voltage. Special care should be taken to DC bias effect in order to make sure that the real capacitor value is always higher than the minimum allowable capacitor value specified.

PCB Layout Recommendation

The high speed operation of the NCP6925 demands careful attention to board layout and component placement. To prevent electromagnetic interference (EMI) problems and reduce voltage ripple of the device, any high current copper trace which see high frequency switching should be optimized. Therefore, use short and wide traces for power current paths and for power ground tracks, power plane and ground plane are recommended if possible.

Both the inductor and input/output capacitor of each DC to DC converters are in the high frequency switching path where current flow may be discontinuous. These components should be placed as close to NCP6925 as possible to reduce parasitic inductance connection. Also it is important to minimize the area of the switching nodes and use the ground plane under them to minimize cross−talk to sensitive signals and ICs. It's suggested to keep as complete of a ground plane under NCP6925 as possible.

PGND and AGND pin connection must be connected to the ground plane. Care should be taken to avoid noise interference between PGND and AGND.

It is always good practice to keep the sensitive tracks such as feedback connection (FB1 / FB2) away from switching signal connections (SW1 / SW2) by laying the tracks on the other side or inner layers of PCB.

Figure 47. Recommended PCB Assembly (top view)

Figure 48. Demoboard Example

THERMAL CONSIDERATIONS

Careful attention must be paid to the power dissipation of the NCP6925. The power dissipation is a function of efficiency and output power. Hence, increasing the output power requires better components selection. Care should be taken of LDO V_{DROP} , the larger it is, the higher dissipation it will bring to NCP6925. Keep a large copper plane under and close to NCP6925 is helpful for thermal dissipation.

ORDERING INFORMATION

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*This is flip chip package without die coating

Demo Board Available:

The NCP6925GEVB/D evaluation board configures the device in typical application to supply constant voltage.

PACKAGE DIMENSIONS

WLCSP36 2.36x2.36 CASE 567GW ISSUE O

NOTES

1. DIMENSIONING AND TOLERANCING PER

ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

SOLDERING FOOTPRINT* RECOMMENDED

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and

Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC wors the rights to a number of patents, trademarks, copyrights, trademarks, copyrights, trademarks copyright surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal inju

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303−675−2175 or 800−344−3860 Toll Free USA/Canada **Fax**: 303−675−2176 or 800−344−3867 Toll Free USA/Canada **Email**: orderlit@onsemi.com

N. American Technical Support: 800−282−9855 Toll Free USA/Canada **Europe, Middle East and Africa Technical Support:**

Phone: 421 33 790 2910 **Japan Customer Focus Center** Phone: 81−3−5817−1050

ON Semiconductor Website: **www.onsemi.com**

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative